首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73693篇
  免费   6273篇
  国内免费   12503篇
化学   66453篇
晶体学   595篇
力学   1169篇
综合类   873篇
数学   7941篇
物理学   15438篇
  2023年   1055篇
  2022年   1347篇
  2021年   2576篇
  2020年   2775篇
  2019年   2517篇
  2018年   2239篇
  2017年   2364篇
  2016年   2685篇
  2015年   2611篇
  2014年   3517篇
  2013年   5661篇
  2012年   4037篇
  2011年   4459篇
  2010年   3642篇
  2009年   4321篇
  2008年   4518篇
  2007年   4953篇
  2006年   4140篇
  2005年   3317篇
  2004年   3240篇
  2003年   2892篇
  2002年   4762篇
  2001年   1952篇
  2000年   1601篇
  1999年   1379篇
  1998年   1279篇
  1997年   1097篇
  1996年   1072篇
  1995年   1041篇
  1994年   931篇
  1993年   958篇
  1992年   875篇
  1991年   599篇
  1990年   492篇
  1989年   396篇
  1988年   378篇
  1987年   281篇
  1986年   276篇
  1985年   399篇
  1984年   304篇
  1983年   176篇
  1982年   335篇
  1981年   509篇
  1980年   463篇
  1979年   491篇
  1978年   397篇
  1977年   312篇
  1976年   274篇
  1974年   115篇
  1973年   174篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
在1,4-二氮杂二环[2.2.2]辛烷(DABCO)促进下,以水为反应介质,通过3-溴乙酰基-4-羟基-1-甲基-2-喹啉酮与芳香醛的亲核取代、分子内环化及消除的串联反应,合成了9个新型的呋喃并[3,2-c]喹啉酮类化合物,其结构经~1H NMR,~(13)C NMR,IR,MS(ESI)和元素分析表征。  相似文献   
992.
以丙二酸二乙酯为起始原料,经选择性皂化、酸化、氯化、环合和酰胺化反应合成了2-[5-(3-羟基苯甲酰氨基)-1,3,4-噻二唑]基乙酸乙酯(1),总收率37.2%,其结构经1H NMR,13C NMR,IR和LC-MS(ESI)确证。采用正交实验法[L_9(3~4)]优化了酰胺化反应的条件。结果表明:在最优反应条件{n[2-(5-氨基-[1,3,4]-噻二唑)基乙酸乙酯]∶n(三乙胺)∶n(间羟基苯甲酰氯)=1∶2∶3,于20℃反应8 h}下,1收率75.5%。  相似文献   
993.
Ruthenium‐functionalized poly(N‐isopropyl acrylamide)‐based chemically oscillating microgels with diameters between 1 and 6 µm are synthesized by a modified precipitation polymerization approach. It is found that the initial amount of N‐isopropyl acrylamide (NIPAAm) can significantly affect the final sizes of the microgels. 2.5 g of initial NIPAAm results in microgels with maximum average diameter of ≈6 ± 0.5 µm. Making use of their fluorescence due to their ruthenium contents and their larger sizes compared to microgels prepared using other traditional methods, the impact of changes in the NaBrO3 concentrations on their microscopic behavior is studied using a combination of fluorescence microscopy and dynamic light scattering techniques. When increasing the concentration of NaBrO3 in a solution, the microgels first experience a decrease in size followed by aggregation that leads to the loss of colloidal stability. Finally, the redox potential behavior and optical performance of the Belousov–Zhabotinsky reaction catalyzed by these microgels are studied by electrochemical and spectroscopic means.

  相似文献   

994.
Iron‐mediated atom transfer radical polymerization (ATRP) has gained extensive attention because of the superiority of iron catalysts, such as low toxicity, abundant reserves, and good biocompatibility. Herein, a practical iron catalyst recycling system, photoinduced iron‐based water‐induced phase separable catalysis ATRP with initiators for continuous activator regeneration, at room temperature is developed for the first time. In this polymerization system, the polymerization is conducted in homogenous solvents consisting of p‐xylene and ethanol, using commercially available 5,10,15,20‐tetraphenyl‐21H,23H‐porphine iron(III) chloride as the iron catalyst, ethyl 2‐bromophenylacetate as the ATRP initiator, 2,4,6‐trimethylbenzoyl diphenylphosphine oxide as the photoinitiator, and poly(ethylene glycol) methyl ether methacrylate as the model hydrophilic monomer. After polymerization, a certain amount of water is added to induce the phase separation so that the catalyst can be separated and recycled in p‐xylene phase with very low residual metal complexes (<12 ppm) in the resultant polymers even after six times recycle experiments.

  相似文献   

995.
This study reports a remarkably facile method to synthesize novel ionogels with imidazolium cycle crosslinks based on polyamidoamine (PAMAM) dendrimers via one‐pot, modified Debus–Radziszewski reaction in ionic liquid 1‐ethyl‐3‐methylimidazolium acetate ([EMIM][OAc]). High room temperature ionic conductivity (up to 6.8 mS cm−1) is achieved, and more remarkably, it can still exceed 1 mS cm−1 when the dendrimer content reached 70% because PAMAM dendrimers are completely amorphous with many cavities and the newly formed imidazolium crosslinks contains ions. The elastic modulus of these ionogels can exceed 106 Pa due to the newly‐formed rigid imidazolium crosslinks. Crucially, these ionogels are robust gels even at temperatures up to 160 °C. Such novel ionogels with high ionic conductivity, tunable modulus, and flexibility are desirable for use in high‐temperature flexible electrochemical devices.  相似文献   
996.
Herein a facile method is reported to prepare polymer gels based on the formation of acylhydrazone bond under mild conditions. A pillar[5]arene derivative appended with ten hydrazide groups provides multiple sites for the reaction with the aldehyde groups of bis(p‐formylphenyl) sebacate in the presence of a small amount of HCl as the catalyst in dimethyl sulfoxide (DMSO), producing transparent polymer organogels. The mechanical properties of gels can be easily tuned by the molar ratio of the reactant compounds. After solvent exchange from DMSO to water, translucent polymer hydrogels with dramatically enhanced strength and stiffness are obtained. The tensile breaking stress and Young's modulus of hydrogels are 20−60 and 1.2–2.7 MPa, respectively, 100 and 20 times those of the corresponding organogels. These robust hydrogels with ultrahigh stiffness should find applications such as in load‐bearing artificial organs. This work should merit designing functional materials using other macrocycles.

  相似文献   

997.
《Electroanalysis》2017,29(2):345-351
A glassy carbon electrode modified with reduced graphene oxide and platinum nanocomposite film was developed simply by electrochemical method for the sensitive and selective detection of nitrite in water. The electrochemical reduction of graphene oxide (GO) efficiently eliminates oxygen‐containing functional groups. Pt nanoparticles were electrochemically and homogeneously deposited on the ErGO surface. Field emission scanning electron microscopy (FE‐SEM), Raman spectroscopy, attenuated total reflectance‐fourier transform infrared spectroscopy (ATR‐FTIR), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) were used to examine the surface morphology and electrocatalytic properties of the Pt‐ErGO nanocomposite film‐modified electrode surface. The fabricated nitrite sensor showed good electrochemical performance with two linear ranges; one from 5 to 100 µM (R2=0.9995) and the other from 100 to 1000 µM (R2=0.9972) and a detection limit of 0.22 µM. The proposed sensor was successfully applied for the detection of nitrite in tap water samples which proves performance of the Pt‐ErGO nanocomposite films.  相似文献   
998.
《Electroanalysis》2017,29(2):409-414
Electrochemistry offers sensitivity, selectivity and low cost for fabrication of sensors capable of detection of selected DNA targets or mutated genes associated with human disease. In this work, we have developed a novel label‐free, indicator‐free strategy of electrochemical DNA sensor based on Fe3O4 nanoparticles/reduced graphene oxide (Fe3O4/r‐GO) nanocomposite modified electrode. By using Fe3O4/r‐GO nanocomposite as a substrate to immobilize probe DNA and subsequent hybridization with target sequence to form dsDNA, a great signal amplification was achieved through measuring changes in DPV peak current of underlying Fe(II)/Fe(III) redox system. With the remarkable attomolar sensitivity and high specificity and at the same time, great simplicity, the proposed strategy may find great applications in different DNA assay fields.  相似文献   
999.
《Electroanalysis》2017,29(8):1950-1960
Herein, we are described a green route to prepare reduced graphene oxide supported cobalt inorganic complex nanocomposite (GRGO/[Co(bpy)3]) (bpy=2,2′‐bipyridine) through facile and wet chemical approach. The formation of the nanocomposite was confirmed through suitable physical and chemical characterization techniques. The GRGO/[Co(bpy)3] nanocomposite was coated on the pretreated glassy carbon electrode (GCE). The GCE/GRGO/[Co(bpy)3] modified electrode has excellent electrocatalytic ability towards methyl parathion reduction, while the overpotential drops drastically to –0.18 V (vs. Ag/AgCl). Moreover, the effect of concentration, scan rate and electrolyte pH were detail studied. Besides, the linear response range was 0.05‐1700 μM and the detection limit was 0.0029 μM (S/N=3) and the sensitivity was 1.8197 μA μM−1 cm−2. Moreover, the fabricated electrode has high level of selectivity, which delivers satisfactory repeatability, reproducibility and stability. The sensing method was successfully demonstrated in real samples such as, tomato and apple samples.  相似文献   
1000.
《Electroanalysis》2017,29(5):1310-1315
A novel photo‐induced electrochemical biosensing method has been developed based on fluorescence quenching effect and electrochemical method. In this sensing strategy, the molecular beacon probes labeled with methylene blue were immobilized on the gold nanoparticles modified gold electrode surface firstly; then dopamine was assembled on the electrode surface through electrostatic interaction with gold nanoparticles. Under the continuous illumination, the fluorescence of the methylene blue was quenched by the gold nanoparticles before hybridization; after hybridization with the complementary DNA, methylene blue was far away from the gold nanoparticles and the fluorescence recovered, and then singlet oxygen was generated in the photosensitive reaction of methylene blue in the presence of dissolved oxygen. Singlet oxygen reacted with dopamine, which resulted in the reduction of concentration of the dopamine on the electrode surface. The current of the dopamine on the electrode was used for the sensing of the conformational change of molecular beacon and hence for the detection of target DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号